Prolonged Exposure to a Mer Ligand in Leukemia: Gas6 Favors Expression of a Partial Mer Glycoform and Reveals a Novel Role for Mer in the Nucleus
نویسندگان
چکیده
Mer tyrosine kinase is ectopically expressed in acute lymphoblastic leukemia and associated with enhanced chemoresistance and disease progression. While such effects are generally ascribed to increased engagement of oncogenic pathways downstream of Mer stimulation by its ligand, Gas6, Mer has not been characterized beyond the scope of its signaling activity. The present study explores Mer behavior following prolonged exposure to Gas6, a context similar to the Gas6-enriched microenvironment of the bone marrow, where a steady supply of ligand facilitates continuous engagement of Mer and likely sustains the presence of leukemic cells. Long-term Gas6 exposure induced production of a partially N-glycosylated form of Mer from newly synthesized stores of protein. Preferential expression of the partial Mer glycoform was associated with diminished levels of Mer on the cell surface and altered Mer localization within the nuclear-soluble and chromatin-bound fractions. The presence of Mer in the nucleus is a novel finding for this receptor, and the glycoform-specific preferences observed in each nuclear compartment suggest that glycosylation may influence Mer function within particular subcellular locales. Previous studies have established Mer as an attractive cancer biologic target, and understanding the complexity of its activity has important implications for potential strategies of Mer inhibition in leukemia therapy. Our results identify several novel features of Mer that expand the breadth of its functions and impact the development of therapeutic modalities designed to target Mer.
منابع مشابه
Mer tyrosine kinase (MerTK) promotes macrophage survival following exposure to oxidative stress.
The MerTK plays several important roles in normal macrophage physiology, including regulation of cytokine secretion and clearance of apoptotic cells. Mer signaling in other cell types, including malignant cells that ectopically overexpress the RTK, leads to downstream prosurvival pathway activation. We explored the hypothesis that Mer has a prosurvival role in macrophages exposed to oxidative s...
متن کاملIdentification and regulation of receptor tyrosine kinases Rse and Mer and their ligand Gas6 in testicular somatic cells.
Receptor tyrosine kinases act to convey extracellular signals to intracellular signaling pathways and ultimately control cell proliferation and differentiation. Rse, Axl, and Mer belong to a newly identified family of cell adhesion molecule-related receptor tyrosine kinase. They bind the vitamin K-dependent protein growth arrest-specific gene 6 (Gas6), which is also structurally related to the ...
متن کاملA soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation.
Membrane-bound receptors generate soluble ligand-binding domains either by proteolytic cleavage of the extracellular domain or alternative mRNA splicing yielding a secreted protein. Mertk (Mer) is in a receptor tyrosine kinase family with Axl and Tyro-3, and all 3 receptors share the Gas6 ligand. Mer regulates macrophage activation, promotes apoptotic cell engulfment, and supports platelet aggr...
متن کاملDifferential TAM receptor–ligand–phospholipid interactions delimit differential TAM bioactivities
The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphat...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation
Membrane-bound receptors generate soluble ligand-binding domains either by proteolytic cleavage of the extracellular domain or alternative mRNA splicing yielding a secreted protein. Mertk (Mer) is in a receptor tyrosine kinase family with Axl and Tyro-3, and all 3 receptors share the Gas6 ligand. Mer regulates macrophage activation, promotes apoptotic cell engulfment, and supports platelet aggr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012